Analytical description of mutational effects in competing asexual populations.

نویسنده

  • Daniel Pinkel
چکیده

The adaptation of a population to a new environment is a result of selection operating on a suite of stochastically occurring mutations. This article presents an analytical approach to understanding the population dynamics during adaptation, specifically addressing a system in which periods of growth are separated by selection in bottlenecks. The analysis derives simple expressions for the average properties of the evolving population, including a quantitative description of progressive narrowing of the range of selection coefficients of the predominant mutant cells and of the proportion of mutant cells as a function of time. A complete statistical description of the bottlenecks is also presented, leading to a description of the stochastic behavior of the population in terms of effective mutation times. The effective mutation times are related to the actual mutation times by calculable probability distributions, similar to the selection coefficients being highly restricted in their probable values. This analytical approach is used to model recently published experimental data from a bacterial coculture experiment, and the results are compared to those of a numerical model published in conjunction with the data. Finally, experimental designs that may improve measurements of fitness distributions are suggested.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutational Meltdowns in Sexual Populations.

Although it is widely acknowledged that the gradual accumulation of mildly deleterious mutations is an important source of extinction for asexual populations, it is generally assumed that this process is of little relevance to sexual species. Here we present results, based on computer simulations and supported by analytical approximations, that indicate that mutation accumulation in small, rand...

متن کامل

Sexual reproduction and Muller’s ratchet in digital organisms

The evolution of sexual reproduction has long been a major problem in biology. According to one theory, sex opposes the fitness-destroying process of Muller’s ratchet, which occurs by the stochastic loss of high-fitness genotypes in small populations. Sex opposes the ratchet by allowing genotypes with different deleterious mutations to produce mutation-free offspring. We used the Avida digitale...

متن کامل

The Evolution of a High Mutation Rate and Declining Fitness in Asexual Populations

Simulations of asexual populations undergoing continual adaptation present a definite prediction: mutator hitchhiking should drive the mutation rate upwards in an asexual population until it reaches an intolerable level, at which point the population will be driven extinct. Experimental studies have shown that a mutator allele can readily hitchhike to fixation with beneficial mutations in an as...

متن کامل

The mutational meltdown in asexual populations.

Loss of fitness due to the accumulation of deleterious mutations appears to be inevitable in small, obligately asexual populations, as these are incapable of reconstituting highly fit genotypes by recombination or back mutation. The cumulative buildup of such mutations is expected to lead to an eventual reduction in population size, and this facilitates the chance accumulation of future mutatio...

متن کامل

Evolution of Genome Size in Asexual Digital Organisms.

Genome sizes have evolved to vary widely, from 250 bases in viroids to 670 billion bases in some amoebas. This remarkable variation in genome size is the outcome of complex interactions between various evolutionary factors such as mutation rate and population size. While comparative genomics has uncovered how some of these evolutionary factors influence genome size, we still do not understand w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 177 4  شماره 

صفحات  -

تاریخ انتشار 2007